\(\int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\) [49]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 66 \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=-\frac {3 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \]

[Out]

-3*a^(3/2)*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d-a^2*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2841, 21, 2852, 212} \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=-\frac {3 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Csc[c + d*x]^2*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-3*a^(3/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d - (a^2*Cot[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-a \int \frac {\csc (c+d x) \left (-\frac {3 a}{2}-\frac {3}{2} a \sin (c+d x)\right )}{\sqrt {a+a \sin (c+d x)}} \, dx \\ & = -\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {1}{2} (3 a) \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {\left (3 a^2\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d} \\ & = -\frac {3 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(180\) vs. \(2(66)=132\).

Time = 1.98 (sec) , antiderivative size = 180, normalized size of antiderivative = 2.73 \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=-\frac {a \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (2 \cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )+3 \left (\log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin (c+d x)\right )}{d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )-\sec \left (\frac {1}{4} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )+\sec \left (\frac {1}{4} (c+d x)\right )\right )} \]

[In]

Integrate[Csc[c + d*x]^2*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-((a*Csc[(c + d*x)/2]^4*Sqrt[a*(1 + Sin[c + d*x])]*(2*Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2] + 3*(Log[1 + Cos[(
c + d*x)/2] - Sin[(c + d*x)/2]] - Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])*Sin[c + d*x]))/(d*(1 + Cot[(c
+ d*x)/2])*(Csc[(c + d*x)/4] - Sec[(c + d*x)/4])*(Csc[(c + d*x)/4] + Sec[(c + d*x)/4])))

Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.56

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \sqrt {a}\, \left (3 \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) a \sin \left (d x +c \right )+\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(103\)

[In]

int(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*a^(1/2)*(3*arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2))*a*sin(d*x+c)+(a-a
*sin(d*x+c))^(1/2)*a^(1/2))/sin(d*x+c)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 268 vs. \(2 (58) = 116\).

Time = 0.27 (sec) , antiderivative size = 268, normalized size of antiderivative = 4.06 \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=\frac {3 \, {\left (a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) - a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (a \cos \left (d x + c\right ) - a \sin \left (d x + c\right ) + a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{4 \, {\left (d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right ) + d\right )} \sin \left (d x + c\right ) - d\right )}} \]

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(3*(a*cos(d*x + c)^2 - (a*cos(d*x + c) + a)*sin(d*x + c) - a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x
+ c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sq
rt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d
*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*(a*cos(d*x + c) - a*sin(d*x + c) + a)*s
qrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^2 - (d*cos(d*x + c) + d)*sin(d*x + c) - d)

Sympy [F(-1)]

Timed out. \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(csc(d*x+c)**2*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=\int { {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \csc \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^(3/2)*csc(d*x + c)^2, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (58) = 116\).

Time = 0.35 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.89 \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=-\frac {\sqrt {2} {\left (3 \, \sqrt {2} a \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}\right )} \sqrt {a}}{4 \, d} \]

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(3*sqrt(2)*a*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi
 + 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + 4*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*p
i + 1/2*d*x + 1/2*c)/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx=\int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\sin \left (c+d\,x\right )}^2} \,d x \]

[In]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^2,x)

[Out]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^2, x)